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ABSTRACT
In this study, we introduce a novel auto-compensation method 
designed to enhance the accuracy of pulsed eddy current (PEC) 
measurements, crucial for non-destructive testing (NDT) in asses
sing the integrity of high-voltage feeder pipes. We explicitly target 
the unique challenges posed by strong electromagnetic interfer
ence (EMI) from internal power lines carrying three-phase alternat
ing current. To address them, we propose a compensation 
algorithm that accounts for spatially varying magnetic permeability 
in the piping materials. The proposed method integrates multi- 
physics simulations of the interactions between the power lines, 
the pipe, and the PEC probe. Two finite element method (FEM) 
simulation models are developed: the Cable-Pipe Model, simulating 
the magnetic flux density distribution around the pipe due to 
internal power lines, and the PEC-Pipe Model, simulating the PEC 
sensing response considering the circumferentially varying mag
netic permeability. To bridge the gap between computational accu
racy and field deployment requirements, novel surrogate models 
are developed based on parametric FEM simulation datasets, allow
ing rapid approximation of characteristic decay time constants and 
nominal wall thickness estimations. Field tests validated our meth
od’s effectiveness, demonstrating a measurable reduction in false- 
positive indications after the physics-based compensation. This 
work challenges the conventional assumption of constant mag
netic permeability in PEC inspections and extends the applicability 
of PEC for flaw detection in high-voltage feeder pipes and other 
challenging inspection scenarios, contributing to improved safety 
and infrastructure longevity.1
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1. Introduction

Pulsed Eddy Current (PEC) inspection is a powerful non-destructive testing (NDT) 
method for evaluating the structural integrity of metallic pipelines, including those 
insulated or coated [1,2]. PEC leverages transient electromagnetic fields to induce eddy 
currents in conductive materials, enabling non-contact and potentially high-speed 
assessments of corrosion, wall thinning, and other subsurface defects – even when 
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pipes are covered by thick insulation or protective layers [3]. By capturing the time- 
domain decay of these eddy currents, inspectors can estimate remaining wall thickness, 
detect localised damage, and gain insights into materials’ electromagnetic properties. 
This approach is particularly beneficial for large-scale pipeline networks, as it minimises 
the need for insulation removal, lowers the risk of exposing hazardous coatings such as 
asbestos, and ultimately reduces both inspection time and costs [4]. Recent PEC research 
has introduced innovations in probe design – including differential probes, U-shaped 
probes, and focused magnetic field methods – that bolster sensitivity and resolution for 
pipeline defect detection [5–7]. For instance, an encircling coil configuration can scan 
cylindrical pipes in a single pass, while specialised magnetic field focusing techniques 
enhance signal-to-noise ratios in challenging environments like well casings or thick- 
walled offshore lines [3]. Furthermore, advanced signal processing algorithms now 
exploit PEC’s broad frequency content, allowing robust flaw characterisation and noise 
suppression [8]. Efforts to integrate Giant Magnetoresistance (GMR) sensors have 
further boosted the detection capabilities, particularly when quantifying small defects 
in ferromagnetic structures [9] Beyond these technical refinements, a growing body of 
work demonstrates the synergy between PEC and robotic platforms for automated, large- 
scale pipeline inspections. Subsea PEC systems mounted on Remotely Operated Vehicles 
(ROVs) can collect corrosion profiles of offshore pipelines without risking diver safety, 
conducting thorough scans along extended pipe sections at significant depths [6]. In-pipe 
robots provide similarly efficient coverage, allowing dense thickness measurements from 
within the pipeline – even around bends or in partially obstructed segments [4]. More 
recently, unmanned aerial vehicles (UAVs) equipped with PEC sensors have shown 
promise for remotely inspecting aboveground pipelines or elevated structures, although 
precise sensor alignment and lift-off control remain active research topics [5]. 
Collectively, these robotic integrations underscore how PEC’s non-contact operation 
and tolerant standoff distance are ideally suited to mobile platforms, accelerating data 
collection and enhancing worker safety in otherwise hazardous or unreachable 
environments.

Electromagnetic interference (EMI), whether from industrial operations, wireless 
communications, or magnetic equipment, presents a significant challenge to accu
rate PEC-based inspections by distorting measurement signals [10]. In the context 
of PEC for corrosion or thickness evaluation, high-current pulsed coils and external 
magnets used to bias the inspection field often contribute additional noise. 
Researchers have tackled these EMI issues through a wide range of compensation 
and modelling strategies. For instance, magnetic field calibration systems have been 
proposed to achieve low measurement uncertainty even in noisy conditions [11], 
while adaptive interference suppression algorithms, such as adaptive filters, have 
demonstrated significant reduction in ambient magnetic noise [12]. Likewise, 
advanced electromagnetic field modelling techniques help predict and remove 
interference before and after active compensation, providing a theoretical founda
tion to refine system-level designs [13–15]. These modelling approaches account for 
unwanted coupling paths and allow accurate simulation of how external fields 
interact with PEC sensors. Although many interference mitigation methods focus 
on magnetic sensor calibration or component compensation [14], researchers have 
increasingly explored optimisation-based and machine learning approaches to tackle 
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EMI in broader engineering domains, which can also be adapted to PEC. For 
example, genetic algorithms can optimise discrete EMI filter components – account
ing for stray parasitic elements and source impedances – to ensure electromagnetic 
compatibility while minimising insertion losses [16]. In healthcare monitoring 
contexts, analytical EMI modelling has guided the development of shielding and 
compensation schemes for cardiac implants subjected to external RF fields [17]. 
More recently, an adaptive Bayesian algorithm demonstrated robust real-time EMI 
mitigation in dynamic electromagnetic environments by adjusting classification 
boundaries as interference conditions evolve, delivering high accuracy under severe 
symbol error rates [18]. These approaches, combined with traditional magnetic 
compensation methods, have substantially increased PEC’s resilience in high- 
interference industrial settings, particularly in the oil and gas sector, where detect
ing corrosion under insulation remains critical for asset integrity [19]. Overall, by 
integrating calibration systems, adaptive algorithms, genetic optimisation, and 
Bayesian decision-making, researchers continue to enhance PEC’s reliability and 
efficiency, ensuring precise flaw detection under challenging EMI conditions.

Inspecting high-voltage feeder pipes using PEC presents unique challenges, primarily 
due to the strong magnetic fields generated by the power lines inside the pipe. 
Conventional PEC techniques assume that magnetic permeability remains constant, 
allowing a direct correlation between the PEC signal transient decay rate and nominal 
wall thickness [20]. However, the strong time-varying magnetic fields produced by the 
power lines inside the pipe significantly alter this assumption, particularly in proximity to 
the power lines, resulting in spatially varying permeability. This affects the response 
signal in several ways. The alternating current in the conductors produces a skin effect, 
concentrating the current near the inner surface of the pipe. This effect varies with 
frequency and can lead to non-uniform magnetic flux distributions within the pipe wall. 
High currents can also cause localised magnetic saturation in the ferromagnetic material, 
altering its permeability and consequently affecting the PEC signal. In the initial field test 
setup, the coating was later scraped off in an entire ring around the pipe, and Ultrasonic 
Testing (UT) thickness readings were taken around the complete circumference of the 
pipe. These readings confirmed that the pipe thickness is consistent around the circum
ference and that the variations seen in the PEC data are not due to actual changes in the 
pipe wall thickness. Properly removing the coating to get accurate UT thickness readings 
was crucial for validating the PEC measurements. This further confirmed that the 
assumption of homogeneous magnetic permeability along the pipe’s circumferential 
dimensions is invalid. Such inconsistencies can cause false positive flaw detections, 
resulting in unnecessary maintenance or undetected critical failures.

To address these limitations, a novel compensation methodology is proposed in this 
paper that accounts for spatially varying permeabilities and effectively mitigates electro
magnetic interference from time-varying magnetic fields generated by power lines inside 
the pipe. This approach integrates multi-physics simulations of the interactions between 
the power lines, the pipe, and the PEC probe. It integrates two FEM models: the Cable- 
Pipe Model, which accurately simulates the electromagnetic field distribution, and the 
PEC-Pipe Model, which simulate the PEC transient response under varying conditions. 
The Cable-Pipe Model simulates the magnetic flux density distribution around the 
ferromagnetic pipe wall due to the power lines inside the pipe, incorporating precise 

NONDESTRUCTIVE TESTING AND EVALUATION 3



geometrical parameters and the material’s nonlinear B-H characteristics to yield the 
corresponding relative magnetic permeability.

To further enable in situ inspections over designated scan zones and minimise 
computational complexity, surrogate models are developed trained on parametric FEM 
simulation datasets. These surrogate models’ approximate FEM simulation results based 
on input pipe dimensions, facilitating rapid predictions of the decay time constants and 
wall thickness without the need for costly numerical computations. The compensation 
methodology incorporates a calibration protocol, the generation of a simulated dataset 
for accurate transient decay time prediction under various conditions, and inhomoge
neous permeability distribution. By correlating experimental and simulation through 
a scaling coefficient, the proposed method significantly enhances the reliability and 
computational efficiency of PEC measurements in challenging electromagnetic interfer
ence environments, improving its robustness for flaw detection in high-voltage feeder 
pipes.

By integrating calibration, simulation-based predictive modelling, and surrogate- 
based fast compensation, this methodology represents a significant advancement in non- 
destructive evaluation (NDE), offering a scalable and adaptable solution to a prevalent 
inspection challenge. The integration of two simulations, despite their inherent simpli
fications, achieves a practical compromise between accuracy and field applicability. 
Enhancing the reliability of PEC inspections in complex electromagnetic environments 
where standard assumptions about electromagnetic material properties are invalid can 
improve operational safety, inspection efficiency, and cost-effectiveness in evaluating 
high-voltage feeder pipes and other critical infrastructure components.

2. Analytical model for compensation algorithms

In the inspection of high-voltage feeder pipes using PEC, internal power lines inside the 
pipe introduce significant challenges due to the time-varying magnetic fields they generate. 
They affect the local relative magnetic permeability μr θð Þ of the ferromagnetic carbon steel, 
leading to inaccuracies in wall thickness assessments if not properly accounted for. 
Consider a cylindrical pipe with an inner radius R containing an internal cable carrying 
a current I, and located at an angular position θc ¼ 180� as shown in Figure 1. Cable 
placement follows an eccentric configuration with a normalised offset L ¼ R=2 from the 
longitudinal axis. While the input carries some uncertainties, the model still captures key 
EMI pattern characteristics. This will determine the magnetic field intensity H θð Þ at 
various locations along the circumferential direction, which is critical for understanding 
the variation in relative magnetic permeability μr θð Þ and its subsequent effect on PEC 
measurements.

The distance r θð Þ from the centre of the cable to a point on the inner surface of the 
pipe at angular position θ is calculated using:

Applying Ampère’s Law for a long, straight conductor, the magnetic field intensity H θð Þ
at a distance r θð Þ from the conductor is given by:
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For this geometry, the maximum field intensity occurs at θ ¼ θc. Ferromagnetic materi
als, such as carbon steel, exhibit a nonlinear relationship between the magnetic flux 
density B and the magnetic field intensity H, known as the magnetisation curve or 
B-H curve. As H increases, the material approaches magnetic saturation, and the relative 
magnetic permeability μr decreases, asymptotically approaching the magnetic perme
ability of free space μ0. This relationship can be characterised using material-specific 
magnetisation curves illustrated in Figure 2.

Specifically, the relative magnetic permeability can be expressed as:

As the magnetic field intensity H θð Þ varies around the circumference due to the offset 
cable, μr θð Þ becomes position-dependent. Existing studies have investigated the 

Figure 1. Cross-section view of the pipe with internal cable.

Figure 2. Relative permeability versus magnetic field intensity.
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dominant time constant c1, which is related to the material properties under investiga
tion, specifically magnetic permeability μ, electrical conductivity σ, and wall thickness d. 
Previous work has shown that the dominant time constant behaves as c1 /

1
μrσd2, which 

directly leads to τ / μrσd2 [21,22], where τ is the characteristic decay time. Since this 
relationship has been validated for flat plates and can be extended to curved surfaces, 
such as large-diameter pipes, considering a pipe with cable position-dependent perme
ability μr θð Þ, results in a dominant time constant that varies along the circumferential 
direction. Thus, the dominant time constant becomes:

If we assume a constant permeability bμr during the calibration or modelling process but 
in reality, the permeability is position-dependent, the estimated time constant τ̂ will 
differ from the actual time constant τ θð Þ. Assuming that the wall thickness d remains 
constant in both calculations, the predicted wall thickness can be derived from the ratio 
between the assumed permeability and the actual permeability: 

In field inspections, the lift-off distance l, defined as the separation between the PEC 
probe and the pipe surface, is subject to significant variability. These pipes, constructed 
from carbon steel, are often coated with wax tape as shown in Figure 3(a). The presence 
of various coatings, surface roughness, and probe positioning errors contribute to 
variations in l. Additionally, the pipes are installed in both horizontal and vertical 
orientations, with certain sections featuring wrapped wax tape insulation. Waxes are 
generally poor conductors of electricity, and wax tape, in particular, exhibits a relative 
permeability μr close to that of free space μ0 , effectively rendering them electrically and 
magnetically similar to air [23]To facilitate high-resolution PEC data collection along 
these feeder cable pipes, a robotic platform was developed and deployed. This system is 
engineered to navigate the exterior surface of the pipes vertically and horizontally, 
equipped with PEC probe and associated data acquisition hardware. In the existing 
studies, l is utilised as a critical parameter in PEC signal interpretation. However, the 

Figure 3. (a) Field test with wax tape insulation covering the pipe surface (b) Schematic diagram of 
PEC sensor positioned above the pipe surface with wax tape.
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substantial wax tape thickness variation introduces considerable variance in lwax, as 
shown in Figure 3(b), thereby affecting the PEC signal. Given the analysis of wax tape 
properties, it is justifiable to model it as an air-like medium within the mathematical 
framework. Under this approximation, the effective lift-off can be redefined as the sum of 
the traditional lift-off distance and the thickness of the wax tape insulation. 
Mathematically, this equivalent lift-off is expressed as:

By incorporating lwax into the mathematical model, we effectively account for the 
variations introduced by the wax tape. We incorporate lift-off into our mathematical 
model similar to the model proposed in [24,25]. The induced voltage V t; lð Þ in the 
receiver coil, considering lift-off, can be expressed as: 

where b1 and bi are coefficients dependent on the system parameters related to the sensor 
configuration, ci are higher-order time constants, and k is a constant that accounts for the 
exponential attenuation due to lift-off. When truncating the response signal after the 
excitation decreases to zero, the higher-order terms become negligible, and the expres
sion simplifies to: 

Taking the logarithm of both sides and differentiating with respect to time: 

Notably, the time derivative d
dt ln V t; lð Þ½ � is independent of l, which indicates that the 

decay rate is unaffected by lift-off variations, allowing for reliable wall thickness estima
tion even when lift-off varies. Therefore, the estimated thickness can be expressed as: 

The state-of-the-art method adopts the estimated time derivative based on the assumed 
constant bμr, therefore causing the prediction error: 

To account for the variability in μr θð Þ, we introduce a compensation factor C θð Þ
defined as: 
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By applying C θð Þ, we reduce the impact of permeability variability on thickness estima
tion and improve the accuracy of the PEC measurement for detecting pipe wall thinning. 
However, while C θð Þ is effective under the assumption of constant wall thickness, it 
becomes inadequate when wall thinning occurs. This is because the wall thickness d 
becomes a function of the angular position θ, i.e. d ¼ d θð Þ, leading to an interdependency 
between μr θð Þand d θð Þ. In this context, the relative permeability becomes dependent on 
both θ and d θð Þ: 

where fBH represents the B-H curve function. Determining μr θ; d θð Þð Þ analytically is 
complex due to its dependence on the pipe geometry and wall thickness variations. This 
complexity demands a different approach. In this paper, we compute the average 
permeability over discrete angular segments to account for the spatial variations in 
both μr and d. To achieve this, we discretise the pipe into N angular regions matching 
the number of scan lines (e.g. 8 or 16 lines). For each discrete region i, we compute the 
mean relative permeability μr;i as: 

This discretisation allows us to approximate each angular sector with a representative 
permeability value μr;i, capturing the coupled effects of μr and d variations. The theore
tical numerical model is shown in Figure 4(a).

The complexity of modelling three-phase AC fields, ferromagnetic pipe, and PEC 
probe dynamics in a single FEM simulation becomes very time-consuming when 
accounting for both microsecond pulses and millisecond eddy current decay, despite 

Figure 4. (a) Fully coupled FEM model (b) Cable–pipe Model: frequency-domain analysis of magnetic 
fields from internal cables (c) PEC–pipe Model: time-domain simulation of transient eddy current 
decay.
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its theoretical feasibility. The complexity stems from solving both rapid field changes and 
interactions using fine mesh elements, while simultaneously modelling the complete 
cable bundle, pipe structure, and probe geometry. Moreover, using pre-defined 
B-H curves for ferromagnetic pipe materials requires iterative calculations at each time 
step, creating substantial computational overhead when analysing PEC responses across 
hundreds of milliseconds-scale intervals. At each time step, the solver recalculates local 
permeabilities, solves the system, and then proceeds to the next step, causing an expo
nential increase in run time. To address this issue, we divide the system into two FEM 
models, as shown in Figure 4(b). The initial framework employs a frequency-domain 
Cable-Pipe Model to characterise both the 60 hz current-generated magnetic fields and 
their induced non-uniform pipe magnetisation effects. In the example of Figure 4(a), the 
internal power lines consist of three cables arranged in a triangular formation, each with 
a lead diameter of 15 mm. A refined mesh is used, particularly around the cables and the 
inner pipe wall. This setup yields a varying distribution around the pipe circumference. 
Second, a time‐domain PEC – Pipe Model – depicted in Figure 4(c)—is dedicated to the 
transient response of the pulsed eddy current probe. As illustrated in Figure 5(a), it 
incorporates the calculated spatial permeability variations to simulate the PEC response, 
assigning the appropriate values to each circumferential segment of the pipe wall. By 
doing so, both permeability variations and wall‐thickness loss are accurately captured. 
However, performing FEM simulations for every pipe profile can still be computationally 
expensive, underscoring the benefits of this two‐model approach.

Figure 5. Workflow for field test compensation.
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3. Surrogate models

To address the computational complexities associated with FEM simulations for varying 
pipe parameters – especially crucial for real-time applications in field inspections – we 
have developed surrogate models that approximate FEM simulation results based on 
input parameters as shown in Table 1. They are constructed using Gaussian Process 
Regression (GPR) with a sparse formulation and an RBF (Radial Basis Function) kernel, 
enabling efficient modelling of complex, nonlinear relationships with quantified uncer
tainties. By embedding the direct computation of τ into the surrogate model, we can 
rapidly predict decay time constants τ θð Þ for different μr(θ) and d(θ) without running 
extensive FEM simulations during inspections. This allows for rapid predictions of decay 
time constants and wall thickness without extensive computations, thereby enhancing 
the efficiency and effectiveness of PEC measurements in detecting pipe wall thinning. 
Moreover, τ alignment is incorporated into the surrogate model to remove the scaling 
factor regarding simulation predictions and field measurements. This alignment ensures 
that the predictions are accurate and reliable. By precomputing and storing FEM 
simulation data for different pipe profiles, these surrogate models enable rapid retrieval 
of results, significantly reducing computation time during real-time inspections.

The surrogate modelling framework implements a two-stage approach to replace 
computationally expensive FEM simulations. The first surrogate model maps pipe para
meters to the spatial distribution of relative permeability approximating the function of 
μr θð Þ ¼ F1 R; I; d; θcð Þ. The second stage, the PEC-Pipe surrogate, transforms this perme
ability distribution along with other parameters into characteristic decay 
times τ θð Þ ¼ F2 μr θð Þ; σ; d

� �
.

We illustrate the overall workflow from analytical foundations to rapid field applica
tion. After establishing the theoretical relationships in the Analytical Model, two FEM 
simulations generate parametric datasets. These datasets train two corresponding mod
els: Model 1 approximates μr θð Þ given pipe and cable parameters from simulation of 
Cable-Pipe, while Model 2 predicts τ θð Þ using the inferred μr θð Þ from simulation of PEC- 
Pipe. Finally, the surrogate predictions are used in Compensation during field tests to 
correct for EMI‐distorted signals and obtain accurate pipe wall thickness assessments in 
real time. Overall, we underscore the practical deployment of surrogate-based compen
sation, bridging analytical model with field-ready, computationally efficient methods. At 
the core of the surrogate modelling is the need to predict two primary outputs: the 
relative magnetic permeability distribution μr θð Þaround the pipe’s circumference due to 
the internal cable’s magnetic field, and the corresponding decay time constants τ θð Þ from 
the PEC measurements. To build our surrogate models, we generated a parametric 

Table 1. Inputs and outputs of surrogate models.
Surrogate Models for Approximation Input Output

Cable� Pipe Model F1 Cable current I 
pipe dimensions R 
wall thickness d 
angular position θc of cable

Relative permeability μr θð Þ

PEC� Pipe Model F2 Relative permeability μr θð Þ
electrical conductivity σ 
wall thickness d.

Characteristic decay time constant τ θð Þ
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dataset by varying the pipe radius (R) and wall thickness (d). Specifically, we sampled R 
from 75 mm to 175 mm in increments of 5 mm, resulting in 21 unique outer diameters. 
For each R, we set the d from 5 mm to 15 mm in 1 mm steps, yielding 11 distinct 
thickness values. We conducted dual FEM simulations for each of 231 geometric con
figurations to extract both permeability distributions and temporal decay characteristics. 
The resulting dataset serves as training input, ensuring coverage across a broad range of 
realistic pipe sizes and thicknesses. The surrogate model relies on GPR, which models 
nonlinear relationships by treating outputs as Gaussian process realisations defined by 
mean and covariance functions, while providing uncertainty quantification. Specifically, 
GPR models the relationship between the inputs X and outputs y as: 

where f Xð Þ is an unknown latent function sampled from a Gaussian process, and 
ε,N 0; σ2

nI
� �

represents independent and identically distributed Gaussian noise with 
variance σ2

n. The latent function f Xð Þ is characterised by a Gaussian process: 

where m Xð Þ is the mean function, often set to zero without loss of generality, and 
k X;X 0� �

is the covariance function or kernel that encodes the relationship between data 
points. For the surrogate models, the Radial Basis Function (RBF) kernel, also known as 
the Gaussian kernel, is chosen due to its smoothness and infinite differentiability proper
ties, which are suitable for modelling the underlying physics of the problem. The RBF 
kernel is defined as: 

where σ2
f is the signal variance, controlling the vertical scale of the function variances, and 

Λ ¼ diag l21; l
2
2; . . . ; l2p

� �
is a diagonal matrix of squared length-scale parameters. The 

input vectors xi; xjcorrespond to different observations.
The RBF kernel measures the similarity between input points, with greater values 

indicating more closely related inputs leading to similar outputs. The surrogate models 
are trained using datasets generated from FEM simulations. The training process 
involves optimising the hyperparameters σ2

f ;Λ; σ
2
n of the GPR model. This is typically 

done by maximising the log-marginal likelihood function, which balances data fit and 
model complexity: 

where K is the kernel matrix computed using the RBF kernel for all pairs of training 
inputs, n is the number of training data points, and θ represents all the hyperparameters. 
We maintain separate models that preserve physical interpretability but require sequen
tial execution, therefore, to achieve physical transparency and facilitate model validation. 
By optimising these hyperparameters and incorporating a τ-alignment step that uses 
calibration points where the field-measured decay times τcalibration from field;i are known 
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and the predicted decay time constants τsimulation;i can be scaled with a factor of α and by 
minimising 

We initial the model with σ2
s = 1.0 for signal variance, length scales of 1.0 and noise 

variance σ2
n of 0.01. Then these hyperparameters are optimised using the Limited- 

memory Broyden-Fletcher-Goldfarb-Shanno-Bounds (L-BFGS-B), converging to 
σ2

s ¼ 0:82. The model is further refined through τ-alignment with field measurements, 
enabling accurate real-time predictions. In summary, we implement two surrogates, 
approximating the underlying Cable‐Pipe and PEC‐Pipe numerical models. Firstly, we 
train a GPR surrogate to approximate F1. Next, we build a second surrogate to approx
imate F2 to predict τ θð Þ. Mathematically, this yields an approximate hierarchical sequen
tial function of τ θð Þ ¼ F2 F1 R; I; d; θcð Þ; σ; dð Þ, allowing us to skip running FEM every 
time. Each GPR uses the RBF kernel described above and is trained by maximising the 
log‐marginal likelihood on a parametric dataset of FEM simulations. Moreover, for 
comparison between FEM and GPR in terms of computational efficiency and practicality 
for field inspections. FEM simulations, while accurate, require 1 hour per prediction due 
to their mesh-dependent complexity, necessitating high-performance computing (HPC) 
resources. In contrast, the GPR surrogate model achieves real-time predictions (less than 
2 minutes) after a one-time training phase, with fixed prediction complexity. This 
efficiency allows deployment on lightweight hardware (e.g. inspection robots), bypassing 
the need for HPC clusters. While FEM is indispensable for generating training data, the 
GPR surrogate bridges the gap between physical accuracy and operational feasibility, 
enabling scalable, real-time wall thickness monitoring in EMI-heavy environments.

4. Field tests results and discussion

In this section, we present the results of field tests conducted to validate the effectiveness 
of the proposed auto-compensation algorithm in real-world PEC inspections of high- 
voltage feeder pipes. We analyse the performance of the algorithm across multiple pipe 
segments, compare compensated and uncompensated measurements, and discuss the 
practical implications of our findings.

Figure 6 illustrates the deployment of the PEC inspection system in an underground 
tunnel environment, characterised by space constraints and complex arrangements of 
high-voltage feeder pipes. Despite these challenges, the inspection system, enhanced by 
our compensation algorithm, operated effectively, ensuring accurate data collection. To 
thoroughly assess the pipe surfaces, we employed a dual scanning strategy. First, we 
conduct scans at 45° intervals around the pipe’s circumference to accurately capture wall 
thickness and account for magnetic permeability variations due to internal cables. Next, 
we employed an axial scanning method, during which sensors traversed the entire length 
of the pipe, systematically covering the axial direction to map wall thickness variations 
longitudinally. Calibration of the PEC instrument was critical for ensuring accuracy. We 
initiated the process by attaching the encoder and preparing the system for scanning. An 
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initial point scan targeted areas with near 100% nominal wall thickness and minimal 
insulation, serving as a baseline. We then identified an optimal reference point with 
a higher signal amplitude and slower decay rate, corresponding to the nominal (100%) 
wall thickness. Calibrating at both the beginning and end of each inspection cycle 
ensured probe stability and compensated for any system drift, thereby enhancing mea
surement reliability.

Table 2 summarises the tested pipe segments specifications, including six horizontal 
and two vertical carbon steel pipes from different feeder lines. Notably, segments 
PS17–19 through PS30–14 from Feeder Line 34,051 had available ultrasonic testing 
(UT) validation data. The removal of protective coatings allowed for UT measurements, 
which confirmed consistent wall thickness and indicated that any detected anomalies in 
uncompensated PEC data were false positives due to electromagnetic interference rather 
than actual material loss. All pipes shared similar material properties and were inspected 
using the PEC-025-G2 probe under consistent configurations, although scan modes 
varied between dynamic and grid mapping. The uniform dimensions (outer diameters 
and wall thicknesses) facilitated comparative analysis. Data quality metrics showed low 

Figure 6. (a) Field deployment of PEC inspection system on high-voltage feeder pipes in an under
ground tunnel (b) Schematic representation of circumferential scan positions and corresponding axial 
scan lines.

Table 2. Pipe segment and inspection specifications.

Pipe ID Type/Feeder Dimensions (R/d/Wax Tape Coating) Coverage
No. 

lines
Validation 

Status

PS17–19 Horizontal 
F34051

R: 109.5 mm; d: 6.35 mm Coating: 
6.35 mm

L: 7315.2 mm Circ: 
728.1 mm

8 UT Verified

PS23–25 Horizontal 
F34051

R: 109.5 mm d: 6.35 mm Coating: 
6.35 mm

L: 7315.2 mm Circ: 
728.1 mm

8 UT Verified

PS29–30 Horizontal 
F34051

R: 109.5 mm d: 6.35 mm Coating: 
6.35 mm

L: 7315.2 mm Circ: 
728.1 mm

8 UT Verified

PS30–14 Horizontal 
F34051

R: 109.5 mm d: 6.35 mm Coating: 
6.35 mm

L: 7315.2 mm Circ: 
728.1 mm

8 UT Verified

PS93–92 Horizontal F63 R: 136.5 mm d: 6.35 mm Coating: 
6.35 mm

L: 7315.2 mm Circ: 
897.7 mm

16 N/A

PS100–99 Horizontal F63 R: 136.5 mm d: 6.35 mm Coating: 
6.35 mm

L: 7315.2 mm Circ: 
897.7 mm

16 N/A

Vertical-4 Vertical R: 136.5 mm d: 6.35 mm No Coating L: 6096 mm Circ: 
897.7 mm

4 N/A

Vertical-8 Vertical R: 136.5 mm d: 6.35 mm No Coating L: 6096 mm Circ: 
897.7 mm

8 N/A
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warning percentages (1.52% to 3.93%) for the F34051 segments. The frequent false- 
positive wall loss indications in uncompensated PEC data underscored the necessity of 
our compensation algorithm. While UT validation was possible for accessible areas, some 
uncertainty remains for non-validated sections due to inaccessibility. Nevertheless, the 
compensation algorithm demonstrated improved accuracy across all tested segments, 
reducing false positives and enhancing the reliability of PEC inspections.

Figure 7 presents the probability density distributions of wall thickness measurements 
for four segments, comparing compensated and uncompensated PEC data. The com
pensated measurements exhibit higher means and significantly lower standard devia
tions, indicating enhanced accuracy and precision. For the PS17–19 segment, the mean 
increased from 96.05% to 98.95%, while the standard deviation was reduced from 7.12% 
to 1.45%. Similarly, PS23–25 measurements saw an increase in mean from 98.68% to 
99.39% with a corresponding reduction in variability. In the PS29–30 segment, the mean 
rose from 91.43% to 100.33%. Lastly, the PS30–14 segment showed an increase in mean 
from 89.71% to 100.53%. Unlike the other three segments, PS30–14 shows large post- 
compensation variance, likely due to the split-cable configuration, where two separate 
cables generate independent magnetic field variations. Such field interactions produce 
complex circumferential magnetic patterns that deviate from single-cable simulations. 
This geometric mismatch effect will be the focus of subsequent studies. These results 
demonstrate that the compensation algorithm effectively corrects underestimations 
caused by magnetic interference, aligning the measurements closely with the nominal 

Figure 7. Probability density distributions of wall thickness measurements comparing compensated 
(blue) and uncompensated (red) PEC inspections for four pipe segments: (a) PS17–19 (b) PS23–25 (c) 
PS29–30 and (d) PS30–14.

14 X. HUANG ET AL.



wall thickness of 100%. The reduced standard deviations reflect improved measurement 
consistency. While some uncertainty persists in non-validated areas, the overall enhance
ment in data quality underscores the practical value of the compensation algorithm in 
field applications.

Figure 8 and Figure 9 provide polar visualisations of wall thickness distributions for 
pipe segments PS17–19 and PS30–14, respectively. Each polar plot uses a clockwise 
angular reference system starting from 0° (top), with 45° intervals marking eight cir
cumferential sectors. The radial dimension represents normalised wall thickness, with 
concentric rings indicating percentage values from 20% to 120% relative to the nominal 
thickness. The colour scale ranges from yellow through light blue to dark blue providing 
intuitive visualisation of thickness variations. Before Compensation, both figures show 
significant underestimations in specific angular sectors (e.g. 270°–315° for PS17–19 and 
270°–0° for PS30–14), with measurements indicating up to 20% false material loss. These 
discrepancies are attributed to magnetic field interference from internal power cables. 
The spotted false material loss reflect magnetic field interference from the internal power 

Figure 8. PS17–19 polar visualization of wall thickness distribution before and after compensation.

Figure 9. PS30–14: comparative polar plots of wall thickness distribution before and after 
compensation.
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cables, especially where cable eccentricity or cable bundles produce localised EMI effects. 
After Compensation, the measurements uniformly range from 95% to 105% of the 
nominal thickness in all segments. This uniformity confirms the algorithm’s effectiveness 
in correcting spatial measurement errors and aligns with UT validations of consistent 
wall thickness. The correction of the double-dip pattern in PS30–14 suggests that the 
algorithm successfully addresses complex interference patterns, potentially caused by the 
configuration of the internal three-phase power cables. These visualisations reinforce the 
practical applicability of the compensation algorithm in enhancing inspection accuracy.

Results of Vertical-8 is shown in Figure 10 with eight 45° intervals on a polar grid. 
Reference circles at 0%, 70%, and 100% nominal thickness are shown, with compressed 
scaling below 70% to enhance visualisation. Before compensation, significant measure
ment variability is evident, particularly at 270° and 315°. After compensation, median 
values align near 100% nominal thickness with reduced interquartile ranges, indicating 
enhanced accuracy and consistency.

Figure 11 displays radial box plots for segment PS100–99, comparing pre-and post- 
compensation at 16 circumferential positions (22.5° intervals) on a polar grid with refer
ence circles at 0%, 70%, and 100% nominal thickness. For this horizontal pipe segment 
inspected at 16 circumferential positions, the pre-compensation data shows heterogeneous 
interquartile ranges and medians deviating from the nominal thickness. Post- 
compensation, the measurements display uniform medians near 100%, reduced variability, 
and consistent whisker lengths across all angles. These results affirm that the compensation 
algorithm effectively corrects systematic biases and reduces measurement variability 
regardless of pipe orientation or surface conditions. The algorithm’s ability to improve 
accuracy in both coated horizontal pipes and uncoated vertical pipes underscores its 
practical applicability in diverse field environments. While the proposed method signifi
cantly improves measurement accuracy, limitations exist. The algorithm’s performance in 
non-validated sections of the pipes remains uncertain due to the lack of UT or visual 

Figure 10. Vertical-8 radial box plots displaying the wall thickness distribution before and after 
compensation.
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inspection data. Additionally, the algorithm assumes uniform material properties, which 
may not account for anomalies like localised corrosion or material defects.

Future studies should focus on validating the algorithm in sections inaccessible to UT 
measurements, Future studies should not only focus on validating the algorithm in 
sections inaccessible to UT measurements but also extend testing to real-world condi
tions where pipes may experience natural corrosion processes, heterogeneous wall loss 
patterns, and other in-service degradation mechanisms. Incorporating deep learning 
could enhance the algorithm’s ability to detect and compensate for localised anomalies, 
further improving the reliability of PEC inspections.

5. Conclusion and future work

This paper presents a novel approach to enhancing the accuracy of Pulsed Eddy 
Current (PEC) measurements for the inspection of high-voltage feeder pipes. By 
introducing new physics-based models that, for the first time, effectively compensate 
for signal distortions caused by internal magnetic fields, we have significantly 
improved PEC measurement accuracy. These models account for spatially varying 
magnetic permeability induced by internal current-carrying conductors, addressing 
a critical challenge that previously led to erroneous assessments of material integrity. 
The proposed integrated compensation methodology combines empirical data, finite 
element method (FEM) simulations, and Gaussian Process Regression (GPR) surro
gate models. This integration enables accurate pipeline integrity assessments to be 
conducted within minutes, making the approach practical for in situ inspections and 
real-time applications. The use of surrogate models reduces computational demands 
without compromising accuracy, facilitating rapid and precise wall thickness estima
tions. The compensation methods and accompanying software tool have been 

Figure 11. PS100–99 radial box plots showing wall thickness distribution before and after 
compensation.
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validated through field demonstrations on in-service pipelines. Deploying the system 
in challenging underground tunnel environments confirmed its effectiveness and 
robustness. For future development, we identify several promising directions. First, 
we plan to extend our surrogate modelling framework to handle cable split scenarios 
and more diverse operating conditions. This includes developing enhanced models 
that can account for complex electromagnetic field interactions in split-cable scenar
ios. Second, we aim to implement automated parameter updating capabilities to 
dynamically adjust compensation factors based on real-time measurements. Third, 
we will explore hardware-level solutions such as EMI shielding to complement our 
software-based compensation approach. Finally, we plan to expand our validation 
studies across a broader range of pipe specifications and operating conditions through 
increased industry collaboration. These developments will further strengthen the 
practical applicability of our method while potentially extending its benefits to 
other NDT techniques affected by variable magnetic permeability.

Note

1. A provisional patent application covering the proposed method has been filed (U.S. Patent 
Application No. 18/756,422).
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